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A SEMICLASSICAL TRANSPORT MODEL

FOR THIN QUANTUM BARRIERS

SHI JIN AND KYLE A. NOVAK

Abstract. We present a one-dimensional time-dependent semiclassical transport model for
mixed state scattering with thin quantum barriers. The idea is to solve a stationary Schr6dinger
equation in the thin quantum barrier to obtain the scattering coefficients, and then use them to
supply the interface condition that connects the two classical domains. We then build in the interface
condition to the numerical flux, in the spirit of the Hamiltonian-preserving scheme introduced by Jin
and Wen for a classical barrier. The overall cost is roughly the same as solving a classical barrier.
We construct a numerical method based on this semiclassical approach and validate the model using
various numerical examples.

Key words. multiscale method, semiclassical limit, Liouville, von Neumann, quantum barrier

AMS subject classifications. 65M06, 65Z05, 81Q20, 81S30, 81T80

1. Introduction. Advances in nanoscale materials fabrication technology have
prompted the need for efficient numerical simulation of quantum structures. However,

simulation is difficult when the system reacts over different length and time scales
since the smaller scale usually drives the accuracy and consistency of the solution.
Even when only interested in the macroscopic behavior, one may be forced to resolve
the microscopic dynamics. Correspondence principles allow us to extract macroscopic
behavior from microscopic dynamics in terms of a weak limit. When the scales act over
several orders of magnitude, the numerical solution to the problem at the smallest scale

becomes computationally intractable. In these cases, one often relies on a multiscale
approach to provide a numerically efficient solution.

An example is the modeling of electron transport in nanostructures, such as res-
onant tunneling diodes, superlattices or quantum dots, where quantum phenomena
in localized regions of the devices cannot be ignored. While one can use quantum

mechanics in the entire region, it is clearly more computationally efficient to take a
multiscale approach using classical mechanics in the rest of the device via a domain

decomposition technique. Such a model was introduced by Ben Abdallah, Gamba and
Degond, in which the interface conditions connecting the classical and the quantum
regions were introduced to couple two classical regions with a quantum region [6, 7, 8].

This work is an extension of the Hamiltonian-preserving finite-volume method
introduced by Jin and Wen [17, 16] for solving the multi-dimensional classical Liou-
ville equation with a discontinuous (but classical) potential. The idea there was to

build the interface condition, such as used in [7], that properly incorporates partial
transmission and reflection information at the barrier into the numerical flux. This

produces a scheme that connects momenta (velocities) on both sides of the barrier
via the Hamiltonian preservation principle. Such a method is stable in both I1 and
11 norms under a hyperbolic stability condition and captures sharply the weak semi-

classical limit of the linear Schrddinger equation or geometrical optics through the
barrier or interface.

*Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin
53706-1338, USA (jinomath.wisc.edu, novakCmath.wisc.edu) The views expressed in this article
are those of the author and do not reflect the official policy or position of the United States Air
Force, Department of Defense, or the U.S. Government.
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The quantum barrier that separates the two classical regions differs from a clas-
sical barrier in that a quantum wave can tunnel through a barrier, be partially trans-
mitted and reflected by a barrier, and resonate inside a barrier. Our idea is to solve
the Schrddinger equation (either exactly if possible, or numerically via a transfer
matrix method [1, 18, 12]) inside the quantum barrier in order to generate the trans-
mission and reflection coefficients, and then use that information in the interface
condition to solve the classical Liouville equation through the barrier, in the spirit
of the Hamiltonian-preserving method of Jin and Wen. When the quantum barrier
is thin (on the order of a de Broglie wavelength), solving the stationary Schrbdinger
equation suffices. Thus, our first step is merely preprocessing. Once the transmission
and reflection coefficients are generated, the time marching is based on classical me-
chanics. Hence, our approach, which efficiently handles a thin quantum barrier, has
a computational cost similar to a classical simulation in the entire device.

In §2 we review the correspondence between the classical and quantum mechan-
ics. We then describe the quantum scattering at barriers in §3. We propose the
semiclassical model and its numerical discretization §4. In §5 we present four numer-
ical examples to verify and validate the semiclassical model the numerical method.
Our numerical results indicate that the model captures correctly the solution of the
Schrddinger equation in the entire domain in the limit of vanishing Planck constant.

2. Correspondence between classical and quantum mechanics.

2.1. From classical to quantum mechanics. A typical problem under con-
sideration is particle flow through a solid-state device. If the potential is sufficiently
smooth we may describe non-interacting particle dynamics in phase space classically
as a Hamiltonian system

(2.1) p = = VpH(xp), dp -V =V -VXH(x,p)(.)dt m dt

where x(t) E RWd is the particle position, p(t) E Rd is the momentum, m is the effective
mass and V(x) is a time-independent potential. The Hamiltonian function H(x,p)
represents the total energy of the system

(2.2) H(x,p) = JPL + V(x) = E.

One may introduce a probability distribution of particles f(x, p, t) in phase space.
By requiring that the probability be conserved along the particle trajectories one has

d (9 dx dp
Sf = tf+ .. V + Vpf=0

and with the help of equation (2.1), one gets the classical Liouville equation
a

(2.3) •-f = {H, f} = Vpf. VXH - Vxf. VpH

where {., } is the Poisson bracket. Alternatively,

a
(2.4) f+p. VXf -VV(x), Vpf = 0.

By considering the zeroth-order moment of f(x,p,t), one obtains the probability
position density in physical space

p(x, t) = .Rd f (x, p, t) dp,
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which serves as a primary observable for the comparison of the model.
When the potential fluctuates rapidly over a short distance or the particles im-

pinge on a sharp jump in potential, the classical description fails to capture the
quantum wave-like nature of the particle and the Liouville description produces an
incorrect solution. In particular, the classical Liouville equation does not model bar-
rier tunneling, probabilistic partial reflection and transmission, or resonance which
are crucial to the behavior of many modern electronic devices.

SBy considering Dirac quantization, one has the formal correspondence between
the classical quantities and the quantum operators

(2.5) x -+ x, p - -ihV, and E , ih-La

where h is Planck's constant. Using this quantization, one obtains the Schrhdinger
equation from the classical Hamiltonian (2.2)

(2.6) ih V,= Ih = (- -`2  +y( 0)

which describes the time evolution of the probability amplitude 0 (x,t; i, P) initially
centered at J with an initial energy state E = H(J:,1). The square of the magnitude
of the probability amplitude p(x, t) = 10(X, t) 12 gives the position density in physical
space.

Instead of considering a pure state system, one may also consider a mixed state
system for which the initial state H(x,p) of the particle is given in terms of a macro-
scopic statistical distribution f(x,p). Define the density matrix as

(2.7) A(X, X"t)=jj

The time evolution of the density matrix is found by taking the partial derivative of
equation (2.7) with respect to t. By using the Schrhdinger equation (2.6) and the
hermicity of Hamiltonian operator Ht, one obtains the von Neumann equation

(2.8) iha(x, X ,t) = (-r- [Ax - AX,] + V(X) - V(X') N(x,X/,t)

The von Neumann representation may be thought of as the fundamental descrip-
tion of quantum mechanics [9]. By taking f(i,P) = 5(5i - xo)5(p - po) in (2.7), the
density matrix reduces to 1 (xx', t) = O(x, t;xO,pO)V(x',t;xO,po) and the physical
observables of the mixed state von Neumann equation correspond to those of the
pure state Schrhdinger equation. In this manner, the Schr6dinger equation is simply
a limiting case of the von Neumann equation. By taking the diagonal of the density
matrix, one gets the position density in physical space

=x fd Ld X, (~z)ibt;B,7Cj3) 12 6ýdi

2.2. Semiclassical limit: quantum to classical. Consider a characteristic
length and time scale Lhx and LRt where 5 x is the natural length scale such as a
de Broglie wavelength 5x = h/p for some momentum p. By rescaling x, x' and t

X ý-4 X/Lhx, x' ý-4 x'/Lhx, t ý t/Lht



in the Von Neumann equation we have

(2.9) iE tAx( X,',t) = (--[A. - AX,] + V(X) - V(x')) NX')

where the dimensionless scaled Planck constant E = [mL(6x) 2 /6t]-1 h and the effective
mass m has been nondimensionalized. Solving the Schrddinger and von Neumann
equations numerically presents several difficulties. The de Broglie wavelength must be
resolved numerically to ensure correct physical observables of the solution. Typically,
this requires that the mesh size Ax = O(E) or even o(E) with a similar constraint on
the time discretization At [4, 24]. When E is small, computation is expensive since we
need to use O(Nd+l) operations to compute the Schrbdinger solution and O(N2d+1)

operations to compute the von Neumann solution where N = O(E-1) is the number of
grid points in each space dimension. Because of such reasons, semiclassical methods
are important for the solutions when E < 1.

A typical path to the derivation of semiclassical limit is through the WKB ap-
proximation. However, the WKB approximation to the Schr6dinger equation fails to
capture multiphase information beyond caustics [14, 29]. An alternative method is to
use the Wigner transform, the Fourier transform of the density matrix,

(2.10) W(x,p, t) = 1 j X + Iy, X - 2EY, t)ef• 5 dy.

By applying the transform to the von Neumann equation one has the Wigner equa-
tion [31]

W + • VXW - eOw = 0

where the nonlocal term

e'W(x,p, t) = (1 f i [V(x + iEy) - V(x - ½Ey)] W(x,y,t)e-'P'dy.
(_27)d Rd E 22)9(,~~-PY

with

Vy(x,y,t) = )Rd W(x,p,t)e'P'Ydp

being the inverse Fourier transform of W(x,p,t). When the potential V(x) is suf-
ficiently smooth, one recovers the classical Liouville equation in the limit as E

0 [10, 22]

(2.11) of p(21)-±-* -mVjf- V •V.Vvf =o.

However, the classical limit is not valid at the discontinuties of the potential [3,
27, 28], where the potential behaves as a quantum scatterer. In the case of a quantum
barrier, we may consider a multiscale domain decomposition approach for a solu-
tion [7]. In the next section, we present a semiclassical model of a thin quantum
barrier with the mixed-state dynamics.
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3. Particle behavior at a quantum barrier. To model quantum dynamics,
we consider a top-down multiscale approach by considering the quantum effects as
local corrections to the global classical particle dynamics. In order to isolate and
simplify the problem, we make the following assumptions/limitations:

1. The dynamics are restricted to one dimension.
2. The effective width of a barrier is O(E). On the classical scale, this means

that we may approximate it as having zero width; on the quantum scale, this means
that we may typify it as a single scattering center and we may neglect particle dwell
time in the quantum region in the semiclassical limit.

3. The distance between neighboring barriers is 0(1) and hence each barrier
may be considered independently.

4. The change in the potential VV(x) is 0(1) except at quantum barriers.
5. The coherence time is sufficiently short and therefore we may neglect inter-

ference away from the barrier.
Naturally, one would like to be able to treat a wider class of problems including
periodic crystalline domains and mesoscopic barriers for which E is nonvanishing. We
will examine corrections and extensions to these simplifications in subsequent papers.

We begin with the Hamiltonian system discussed in §2

d d
-t = V-H(Xp), dtp = -V H(x,p).

Let a bicharacteristic of the function H(x,p) be the integral curve 0(t) = (x(t),p(t)).
Note that o(t) may not be defined for all time t E R. When H(o(t)) is differentiable,

d d d
(3.1) HMO) = -X. V dH p.VPH=0

dt tT
from which it follows that the Hamiltonian is constant along any bicharacteristic W(t),
i. e.,

(3.2) H(p(t)) = const.

Condition (3.1) may be interpreted as the strong form of the conservation of energy,
while condition (3.2) may be interpreted as the weak form. If the potential V(x) is
discontinuous or not defined in some region Q E Rd, the Liouville equation fails to
have a global solution since VxV(Q) is undefined.

The key idea behind Hamiltonian preserving schemes [17, 16] is to (a) solve
the Liouville equation locally; (b) use the weak form of the conservation of en-
ergy to connect the local solutions together; and (c) incorporate a physically rel-
evant interface condition to choose the correct solution. Let £ be the locally de-
fined set of bicharacteristics of the function H(x,p). By requiring the Hamiltonian
to be constant along trajectories, we create an equivalence class of bicharacteristics
[W] ={ f* e £ I H(V*) = H(V) }.

Generating a global bicharacteristic is a matter of connecting equivalent bichar-
acteristics at the barriers. If we consider the incident and scattered trajectory limits
(x(t-),p(t-)) and (x(t+),p(t+)) on a barrier in one-dimensional phase space, then
from equation (2.2) the scattered momenta are
(3.3a) p(t+) = -p(t-)

for reflection and

(3.3b) p(t+) = sign[p(t-)] /Ip(t-)I2 + 2m[V(x(t-) - V(x(t+))]

5



for transmission. Unless Ip(t-)12 < 2m[V(x(t+) - V(x(t-))], for which the trans-
mitted momentum is imaginary, the conservation of energy does not tell us which
of these two bicharacteristics a particle should physically follow. In order to resolve
the nonuniqueness, we require an additional interface condition which we derive from
the Schrbdinger solution across the interface. By interpreting a wave function as a
statistical ensemble of a large number of particles [26], we have the interface condition

(3.4) f(x(t+),p(t+)) = R(pr(t-))f(x(t+),pr(t-)) + T(pt(t-))f(x(t-),pt(t-))

where T(p) denotes the probability of an incident particle being transmitted across
some region, R(p) denotes the probability of an incident particle being reflected, and
the incident momenta

pr(t-) = -p(t+) and

pt(t-) = sign[p(t÷)] V'p(t+)12 + 2m[V(x(t+) - V(x(t-))]

come from equations (3.3b) and (3.3a).
We assume that the probability of a particle being absorbed by the barrier is zero

and hence T(p) + R(p) = 1. By defining

T(p(t)) 1 if [p(t-)]2 > 2m[V(x(t+)) - V(x(t-))] and
{ otherwise,

i.e., total transmission/reflection, condition (3.4) reduces the classical Liouville so-
lution for which bicharacteristics are uniquely determined for each (x,p). When
T(p) c (0, 1), i.e., partial transmission/reflection, the bicharacteristics are no longer
unique and instead we consider multiple bicharacteristic solutions.

Every interaction with a barrier potentially introduces a reflected and transmitted
solution resulting in an additional bicharacteristic. We may enumerate the solutions
and define a bicharacteristic solution to the Liouville equation as

fk(x,p, t) = ( )•k(Xp, t; d

where

Pk (x, p, t; 5C, ) = 6(x(t) - i)6(P(t) -

is the kth global bicharacteristic for H(fi,,). By linearity of the Liouville equation we
may consider the general solution as the superposition of the bicharacteristic solutions

(3.5) f(x, p, t) = E ck (H(x, A)) A(x, p, t).
k

where Ck (H(x, p)) is product of reflection and transmission probabilities along the kth
bicharacteristic.

Except for simple solutions such as the global-in-time solution for a piecewise-
constant potential or the local-in-time solution for a piecewise-quadratic potential, an
exact solution cannot be explicitly given. Even for a simple discontinuous oscillator
the number of bicharacteristics that need to be tracked becomes cumbersome in a
short time interval. See Fig. 3.1. By solving the model numerically, we mitigate these
difficulties.

6
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FIG. 3.1. Particle position as a function of time for potential V(x) 21xl - H(x) where H(x)
is the Heaviside step function. Particle has initial conditions 6(x + 1)6(p).

4. A semiclassical approach and numerical discretization.

4.1. A semiclassical approach. When the quantum barrier is sufficiently nar-
row, the barrier may be modeled using the time-independent Schrhdinger equation.
We may then derive the transmission/reflection probabilities for the interface con-
dition (3.4) by considering the current density. The interface condition is used to
connect two classical domains modeled by the classical Liouville equation (2.11).

We consider an algorithm consisting of an initialization routine and a Liouville
solver:

1. During initialization, we determine the stationary states at the barrier by
solving the time-independent Schrhdinger equation. The solutions may be found by
considering the barrier as an open quantum system [2] outside of which the potential
is constant. Typically, this may be done by using a quantum transmitting boundary
method [20], a spectral projection method [23], or a transfer matrix method [1, 18, 12].
With this solution, we compute the scattering information, namely the transmission
and reflection coefficients.

2. Following initialization, we solve the Liouville equation using a finite volume
method. As done in [15] the interface condition (3.4) is built into the numerical
flux in a framework called the Hamilton preserving scheme. This yields a numerical
scheme for which the stability condition-the CFL condition-is hyperbolic, namely
At = O(Ax, Ap) with 1 and 11 stability. See [15].

This approach aims at capturing the weak limit of the Schrhdinger and von Neu-
mann equations as e -* 0, without solving the Schr6dinger or von Neumann equations
over the entire domain, but rather just at the quantum barrier and only in the initial-
ization step. We now discuss the initialization routine and the finite volume routine
in detail.

4.2. Routine initialization. We use the transfer matrix method because it is
robust over a wide range of momenta. On the quantum scale we decompose a one-
dimensional barrier into a sequence of step potentials over which we solve the time-
independent Schr6dinger equation exactly. Take a quantum barrier in the bounded
region Q = [X1, X2] and take the potential to be constant outside this barrier-V(x) =
V1 in C1 = (-oo,x1) and V(x) = V2 in C1 = (x2,oo). For a state E = p 2 /2m the

time-independent Schr6dinger equation

-Eo"(x) + 2mV(x)4(x) = p 2V(x)
7



M2

X1 X2 ...... Xn

FIG. 4.1. Approximation of a potential barrier by a series of step potentials. The effective
transfer matrix M = Mn M 2 M1 where Mj is the transfer matrix for a step potential at xj.

has the solution

aleil(x-x'l)/e + ble-'1(x-xx)/E, x E C1 ,

(4.1) (X) Q, X Q

a 2 eiK2(x-x2)/e + b2 e-iK2(x-x2)/E, x e C2

where K1,2 = p2 
- 2mV1,2 and the coefficients a,, a2 , bl and b2 are uniquely de-

termined by the boundary conditions at x, and X2. By requiring that the solution
,O(x) and its derivative be continuous, OQ is uniquely determined by the values a,
and b, using the boundary conditions bQ(x1) and V•(x1 ). In turn, the values a2 and
b2 are uniquely determined by the values OQ(X 2 ) and 0'(x 2). Since the Schr6dinger
equation is linear, a2 and b2 may be expressed as linear functions of ai and bl. Hence,
for each momentum p we may relate the solution in C2 with the solution C1 in terms
of the transfer matrix M

(a2 ) = M (a,) .(mil M12) (ai)
(4.2) b2  bl \m21 m22/ b1 I

An arbitrary quantum barrier may be discretized and approximated by a series
of step potentials, for each of which a transfer matrix may be computed analytically.
Specifically, the transfer matrix may be approximated as M = Mn" M2 M1 with
Mj = PDjl-1  where

j+1 3

(4.3) Pj + rjn~ rjlni~)2 - nj/aj+l I +{ rl'jl'gj+l]

is the transfer matrix associated with a potential jump V(x+) - V(x-) and

(4.4) Dj = (exp(iAxF;i/r) exp(-iAxj//)) 0

is the transfer matrix associated with the displacement Ax = xj - xj-1.
One may also express the solutions in C1 and C2 in terms of a scattering matrix

S which relates the incident and scattered waves
(45) bl) = S (al) =(rl 1;2) (a,) _ -m21/Tm22 1/Tn22 " al,

(5a2  b2 = t1  r 2  b2) =, A/m 22  m12/rn22,) b2 J"
where A = det M = rn2 2rn1 I - M 1 2rn 2 1 . By considering the time evolution of the posi-
tion density p(x, t) = I0(x, t)12 in the Schrbdinger equation, one derives the continuity
equation

j-tp +V.J=0

8



where the current-density is defined as J(x) = Em-'Im (¢V¢). From equations (4.1),
one has that

4IaI (jal12 - Ibi12 ) /m, x C Cl(4.6) J(X) -{2 (1a212 - Ib212) /m, x C C2

where m is the effective particle mass. The positive-valued terms of the J(x) express
the flux of right-traveling waves and the negative-valued terms express the flux of

left-traveling waves. In particular, for a wave incident on the barrier from the left
(b2 = 0), we have a 2 = tial and b, = r 1 al. It follows that the reflection coefficient R 1,
the ratio of the reflected to incident current densities, and the transmission coefficient
T 1, the ratio of the transmitted to incident current densities, are

(4.7) R 1 = jr, 2  and T 1 = (r 2 /;1) It, 12.

Similarly, for a wave incident from the right

(4.8) R2 =-Ir212  and T2 = (r-l/K 2)[t2 12.

The transmission and reflection coefficients are uniquely determined along a bichar-
acteristic. It is clear by time-reversibility that the transmission coefficient along any
bicharacteristic is independent of direction

(4.9) TI(p) = T2 (- Vp2 + 2m(V 2 - V1 ))

4.3. A Liouville solver. Without loss of generality, we shall take the mass
m = 1 in which case we equate the velocity with the momentum p. To solve
the semiclassical Liouville equation (2.11), we use a Hamiltonian-preserving finite-
volume method [17]. We consider a uniform mesh in phase space with grid points at

(XiT1/2,Pj+l/2) and denote grid spacing Ax = Xi+1/2 - xi-1/ 2 and Ap = Pj+1/2 -

P 3-1/2 with ij C Z. Let the cell centers be xi = 1(Xi+l/ 2 + xi- 1/ 2) and pj

I(Pj+1/2 +Pj-1/2). For convenience of notation, we shall take P0 - 0 andp-j = -pj.
We shall consider the quantum barrier to be located at a cell interface xz+1/2 for
some integer(s) Z.

Define the cell average over the cell Cij = [xi-1 1 2 , Xi+ 1 /2 ) X [PJ-1/2,Pj+I/2) as

fin 1 I xp t) d .
fj = AxAp Jji fXAt)ddp

The finite-volume discretization of the one-dimensional Liouville equation (2.11) is

(4.10) [1+lj -- At [pjaxf'j -- 8ViOpgffl.

where the discrete operators xfij, 8,pfij and c0xVi are

4x fij = (fl 2 , - ft/2,j)/Ax

Opfij = (fi,j+1/2 - fij-1/ 2 )/Ap, and

Vi = (Kv+1/2 - Ký1/2)/Ax

9



with

= f4+ 1/2,/ f(x,p)dp,

i+1/ Pj-/2
fij+1/2 = j+ f(x,pj+1/ 2 )dx, and

±+1/2 = lirn V(x).

Upwinding is used to approximate the fluxes f / and fi,j+l/2" If the potential

an f+j12.Ifth otntaV(x) is continuous at some point Xi+l/2, then p(t+) = p(t-) and hence f =+1/2,j

fi'++2j which reduces the discretized Liouville equation (4.10) to the usual upwind
finite volume scheme. At the barrier xZ+1/2, special consideration must be taken.

From conservation of the Hamiltonian (3.3) we have that the incident velocity qj
(upwind of the barrier) for a particle transmitted with velocity pj is

qj - V/P2±1 2(V2+1/2 -- VZ+I/2).

Similarly, the transmitted velocity (downwind of the barrier) for a particle incident

with velocity pj is -q-j. The incident velocity for a particle reflected with velocity
pj is simply -pj. Note that, whereas -p-j = pj, in general -q-j 0 qj. Further note
that by time reversibility T(q-j) = T(pj) and R(q-j) = R(pj).

The left and right limits of the probability distribution f in the cells immediately
downwind of the quantum barrier are determined by the interface condition (3.4)

++l/2,j = R(qj)f+ 1 /2,-j + T(qj)f(Xz+1 1 2, q) for j > 0

fz+12,j = R(qj)f+ 11 2,j + T(qj)f(x++1 1 2 , qj) for j < 0.

The values for f(xz+1 /2 qj) are approximated in a manner similar to Scheme II of [17].

Consider the flux incident from the left (qj > 0)-the same treatment applies to flux

incident from the right. We define f(xz+1 / 2, qj) as the cell average

(4.11) f(Xz+1 / 2,1q) M p j-12 pf(xz+11 2 ,p) dpPA Jqj-112

where

qj±1/2 = j±1/ 2 ±+ 1/2VzV±11 -

The integral is approximated by a composite mid-point rule. Since the limits of the
integral are not generally gridpoints in the p-direction, some care must be taken. If

Pk-1/2 < qj-1/ 2 < qj+l/2 •- Pk+1/2 for some k, then we take

f(XZ+/1 1 2 qJ) = f +l/2,k + qjý(fH +1/2,k)

where the slope ap(.) in the p-direction is calculated using the Van Leer limiter

(4.12) a,,,(fi) - fii fLj-1 ) 0 (Z'i+i' fi)
Ap 1 ij0 fij-"
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with 0(0) = (0 + 101)/(1 + 101) [21]. Otherwise Pk-1/2 <qj-1/2 < .. < qj+1/2 -

Pk+s+1/2 for some k and s, and we take

(4.13) f(Xz+11 2 ,qj) =

{(Pk+1/2 -qj-1/2)[Pkfz+l/ 2 ,k + (Pk+x/2 +q"-/2)Up(PkfZ+1/ 2 k)]
pj Ap

Pk+lAPf5+l/ 2 ,k+l +"'+Pk+s-lAPfZ+l/ 2 ,k+sl +

(qj- 1 / 2 - Pk+s-1/2) [Pk+qsfi+-I2,k+s + 12(Pk+s-1/2 + qj-±12)0rp(Pk+sfiz-/, 2 k-s)]}.

For a second-order accurate method we use a slope-limited piecewise-linear inter-
polant to approximate the right and left density limits
(4.14) f± 1 (1 T3 2i=/,- fi T 1 1--A)Ao, f

where Aj = IvjlAt/Ax and the slope ox(.) in the x-direction is calculated using the
Van Leer limiter

(4.15) a(fij) ( fiJ - i-j (filj -fi)

Since the slope a•(.) is a function of fi-ij, fij and fi+,± and the density f is
not necessarily continuous across the barrier in the x-direction, we can not directly
use (4.14) and (4.15) to calculate the density limits at the barrier interface. Rather,
we first need to construct the ghost densities fý and fý+l across the barrier using
the scattered densities at xz and xz+l based on conservation of mass. Specifically,
downwind of the barrier

f•=+-f2 +f 1/ 2 (fý' fZ+-, fZ±2) and f1- , 2 (fz-i, fz, fz±-)

with ghost densities fý and fý+l located upwind of the barrier; and upwind of the
barrier

+ -f+ 2 (fz-1, fz, f+l) and fz+3 / 2 (fý, fz+l, fz+2)

with ghost densities fý and fý+j located downwind of the barrier.
Construction of the ghost densities is analogous to using ghost cells to enforce

semipermeable inflow and outflow reflecting boundary conditions. To calculate the
ghost densities upwind of the barrier we use the interface condition (3.4) to mix to-
gether the densities upwind of the barrier that will subsequently be combined through
transmission and reflection. In this case,

f},j = R(qj)fz+,,-j + T(qj)f(xz, qj) for j > 0,

fý+lj = R(qj)fz,-j + T(qj)f(xz+l, qj) forj < 0.

To calculate the ghost densities downwind of the barrier we unmix the densities down-
wind of the barrier that were previously combined through transmission and reflection
at the barrier. In this case,

- T(pj)f (xz+l, -q-j) - R(pj)fz,-j for j > 0,
T(pj) - R(pj)

, T(pj)f (xz, -q-j) - R(pj)fz+l,-j for j < 0.

T(pj) - R(pj)



In both cases, the densities f (xz+l, ±q-j) and f(xz, -q±j) are approximated in a
manner similar to (4.11).

To approximate fi3.+1 / 2 to second-order in the p-direction we have

f = ij T/ (1 - M) APp(f j)

with \i = I&•VjlAt/Ap and the slope up(.) defined using the van Leer limiter (4.12).

5. Numerical examples. In this section, we present a few examples of both
pure state dynamics and mixed state dynamics in order to verify and validate the
semiclassical model and numerical scheme.

For a mixed state solution with a macroscopic distribution, we are not limited by
the support of the wavepacket and the complexity of the scheme is O((AxApAt)-1)
where Ax, Ap, and At > E. For direct simulation of the von Neumann equation, not
only must we resolve E in space and time but we must solve the equation over two
space dimensions and one time dimension so the complexity of the scheme is 0(6- 3 ).
When e < 1, the computing time for a direct von Neumann solution is considerably
longer than for the multiscale semiclassical Liouville solution.

The numerical Schr6dinger solution may be computed using the Crank-Nicolson
operator

(5.1) O(xi, t + At) = (1 + iE-1AtHD)-1 (1 - iE-1AtHD)X(xi, t)

where the discrete Hamiltonian operator
_E 2 ji,i-,1 -- 2Jjii "Jj ,i+1

(5.2) HD = 2+ (Ax)2 + V(xj)

with Kronecker delta 65i = 1 and Sij = 0 if i # j. Markowich et al. [24] show that for
such a scheme, in order to guarantee correct approximation to physical observables
for small E, one needs to take Ax = o(E) and At = o(E). One may also compute
the numerical Schrbdinger solution using a pseudospectral method with Strang split-
ting [4]. In this case, one splits the kinetic and potential terms, so that for each time
step

C(X, t + At) = eAtB/ 2y7F1 [e AtA.F [e AtB/2V)(X, t)]]I

where

A-= 2 ki2  and B= 1V(x)
2mi T

and the operators TF and Y` denote the one-dimensional discrete Fourier transform
and discrete inverse Fourier transform with respect to the x and k variables. One can
use a mesh that is coarser than the mesh required by a finite-difference method to
resolve E and capture the correct dynamics [4, 5]. Based on numerical observation,
we find that we require Ax < e/4 to ensure numerical convergence to the correct
physical observables and for numerical error to be insignificant. When the potential
is discontinuous, we find that the solution exhibits artificial oscillations unless At <
(Ax) 2 /E and At < E/V(x).

The von Neumann equation

= -- I - (HtpT)T with HI= -2a. + V(x)
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has the formal solution

X(z, x', t + At) eieAtHt(x, x', t)e-iEAt.

By using the discrete Hamiltonian operator (5.2), we may approximate the von Neu-
mann solution in terms of the Crank-Nicolson operator (5.1) to get a method without
splitting error

-7+' (1 + iE-'AtHD)-'(1 - iE-lAtHD),3i with

= (1 - i-AtHD)-1 (1 + i'-lAtHD),3'

where P= j(xj, xý, t,,). We may also solve the von Neumann equation using a
pseudospectral method with Strang splitting [13],

r1 = e AtB/ 2 .T-1 (e AtAY7 (e AtB/2j))

where

A = • (k22 - k' 2) and B = -(V(x) - V(x'))
2mi

and the operators 97 and -- 1 denote the two-dimensional discrete Fourier transform
and discrete inverse Fourier transform with respect to the (x, x') and (k, k') variables.
The FFTs may be optimized by exploiting the hermicity of the density matrix.

Alternatively, we may calculate the von Neumann solution indirectly by solving
the Schr6dinger equation for several states and then using definition (2.7) to construct
the density matrix. This simplifies a two-dimensional problem over N 2 grid-points to
n independent one-dimensional problems over N grid-points. If the initial distribution
is localized in phase space, n may-be chosen to be appreciably smaller than N, saving
not only memory but also contributing to a considerable reduction in computation
time. Furthermore, this approach allows us to implement the solution using a parallel
computer cluster. One way to implement such a scheme is to use states generated by
taking thin slices of the initial distribution along the x-direction. Consider the WKB
initial condition

(5.3) b(x, 0; i,1) = (u '•-" 4 exp(-(x - •)2/40,2) exp(i~x/e),

which describes a wave packet with an 0(1) spread in position and 0(e) spread in
momentum. Let the weight distribution in the definition of the density matrix (2.7)
be

P02 82 2/(2, 27r

(5.4) f(.,P) = 6(• - xo) exp(-(• - p0)/2 ý)/( S -)

where the scaling factor s, = 1/ 1 + (E/2axap) 2. Then

P(x, xl, 0) 00 1(i, op (x, 0; i, P)7(x', 0; Jr,P) di dp

-xp (X _-XO) 2 +(X' - XO) 2  (X-X) ipo(X - Xl)

1 ( X(- ) + x') -_ )2 (x x')2  ipo(X -x')

- r " \ 2a2 2E2 2  E

13



Using the Wigner transform (2.10), we have the equivalent Liouville initial distribu-
tion

(5.5) f(x),p,O) 0) 1x (X _X-)2 e _ po) 2

2i7rc 01P2u2 2aP)

which is independent of E.
To compare the convergence of the Schrddinger and von Neumann solution in the

semiclassical limit, we use the L'-error of the position probability density function
(pdf),

J p(xt) - 1b(x, t)121 dX

with p(x, t) = f~jo f(x,p, t) dp. We replace 1b(x, t)12 with 3(x, x, t) for the von Neu-
mann solution. The semiclassical Liouville model should also predict the correct weak
limit for multiphase solutions when interference in the Schr6dinger and von Neumann
solutions result in oscillations in the probability density distribution. To measure
the weak convergence in the semiclassical limit, we determine the Ll-error in the
cumulative distribution function (cdf), i.e., the antiderivative of position density [11]

P(s,t) - t¢(s,t)2 ds dx.

In each example we compare the exact or numerical semiclassical Liouville so-
lution with numerical Schr6dinger or von Neumann solutions for equivalent initial
distributions and potentials. Since the interactions with the boundaries are not rel-
evant to the study, a sufficiently large domain is chosen and simulation is stopped
before the wave envelope reaches the boundaries.

5.1. Schr~dinger 0(1) wave envelope with a step potential. Consider the
step potential

(5.6)ro if X< 0,
(5.6) V(x) = if x > 0.

A particle impinging on this potential from the left is totally reflected when the
incident velocity is less than 1.

We find the exact solution by the method of characteristics by tracing along the
bicharacteristics backward in time to the initial conditions. Let Ql(t) = { (x,p) Ix <
0 and x - pt < 0, or x > 0 and x - pt > 0 } be the region in phase space where the
bicharacteristics have not crossed the quantum barrier at x = 0 within a time t. Then
the exact solution

f (X - pt' p, 0), (x1p) E Qft)

(5.7) f(x,p,t)= T.f (x-qt, q,O) +R.f(-x+pt,-p,O), otherwise

where the incident velocity is given by q = vp -+I if p > 0 and q = - p 2 - 1 if

p < 0. From equations (4.3) and (4.7), the reflection coefficient is given by

R-= P-q 2= p-q14.
p1q

14



Note that when p c [-1, 0], q is imaginary and R = 1 indicating total reflection.

Consider the WKB initial condition

O(x, 0) = A(x)

as a wavepacket generalization with the amplitude and phase functions given by

A(x) = (7ro.2)-1/4e-(---O)
2 /a 2

S(x) = ax 2 + bx + c.

Since S(x) is a quadratic function, we can calculate the Wigner transform of V'(x, 0)
exactly to get

f (x, p, 0) = (TsE)-' e(-xo) 2 /a 2 e-(2az±bP) 2/(•/U).

In the semiclassical limit (e -- 0), we have

f(x,p, 0) = A2(x)6(p - VxS(x))

(5.8) = (u,/)-le-(x-xO)2 /a 2 6(p - (2ax + b)).

By taking a = 0(1) in A(x), we create a wave envelope that is independent of
e, allowing us to study the convergence of solutions as e -4 0. When a 5 0, the
distribution of phases included in the Schr6dinger solution is also 0(1).

Using the above semiclassical WKB initial conditions (5.8), we note that when
t = -1/2a the position density for the Liouville solution (5.7) exhibits a caustic
with all bicharacteristics intersecting at either x = b/2a, or x = -b/2a for reflected
solutions. Because of the nonlinear change to the incident velocities, the transmitted
bicharacteristics do not cross simultaneously resulting in a traveling front, the leading
edge of which is unbounded.

Take (xo,po) = (-1,1) andtakea= -1, b=po-2a= 3 anda=#1. Thenwe
have the initial conditions

4O(x, 0) = (10/7t)
1/ 4 e-200(x-o)2 ei(aX2 +(po-2axo)x)e

for the Schr~dinger equation and

f(x,p, 0) = (10/7r)1/ 2 eOO(x-xO) 2 5(p - PO - 2a(x - xo))

for the semiclassical Liouville equation. The numerical Schr6dinger solution is solved
using a Crank-Nicolson finite-difference method over the domain [-1, 1] with mesh
size Ax = At - 10-6. The exact semiclassical Liouville solution is solved by tracking
characteristics forward in time with values determined by the initial velocity given by
VS = - ½1 x. We compute the solution at time t = 0.8.

The position densities for several values of E are shown in Fig. 5.1. The conver-
gence results of the errors in the two solutions are listed in Table 5.1. Based on this
study, we find that the 11 convergence rate in 6 of the pdf is about 0.6 and the 11
convergence rate in - of the cdf is about 1.1.
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TABLE 5.1
Errors in solutions for different values of E for Example 5.1.

200-1 800-1 3200-' 12800-'

ll-error (pdf) 8.78 x 10-' 3.37 x 10-' 1.55 x 10-1 8.61 x 10-2

l
1 -error (cdf) 5.15 x 10-2 1.00 x 10-2 2.28 x 10-3 1.08 x 10-4
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Fio. 5.1. Position densities for the semiclassical Liouville (top) and Schr(dinger (bottom)
solutions of Example 5.1. The Schrndinger solution shows E = (a) 200-1, (b) 800-1, (c) 3200-1
and (d) 12800-1. The position density of Liouville solution exhibits a caustic near x = 0.08 and the
peak is unbounded. For the Schr5dinger solution the peak reaches a height of 19 for the e = 12800-'
The plots are truncated for clarity.

5.2. Von Neumann solution with step potential. We now consider the
solution to the von Neumann equation with the step potential given Example 5.1.
To construct a von Neumann initial condition ý(x, x', 0) which corresponds to a Li-
ouville initial condition f(x,p, 0), we may directly use the definition of the density
matrix (2.7) for some weight function with the probability amplitudes V(x, t) given
by Gaussian e-wavepackets

(5.9) o (X, 0) (xE)1/4e(XXO) 2/2EeePsx/E

The Liouville initial condition may subsequently be calculated by a Wigner transform
of the density matrix. Alternatively, we may construct the density matrix by using
the inverse Wigner transform applied to the Liouville initial conditions f(x,p, 0) to
get

X3(x, X', 0) j f(½(x + x'),p, 0)e'P(x x)/E dp.
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By taking the Liouville initial conditions to be the Gaussian

1 ex,((X -XO)2\ (p - po) 2

(5.10) f (p) A 0e 2a2 exp 2a

we may compute the von Neumann initial conditions exactly to get
(5. 11) (x, x, 0)- 1 " ((x + x') - xo) 22 (x - x') 2T ipo(X -x')

-5,F exp 2u2 2E2 2

We chose ax = up = 0.05, xO = -0.5 and P0 = 1.0 and compared the solutions to
the von Neumann and semiclassical Liouville equations at time t = 1.0. The von Neu-
mann equation was solved using the psuedospectral method with Strang splitting over
the domain [-1, 1] with - = 64-1, 128-', 256-1 and 512-'. The grid spacing was
fixed at Ax = 2048-1 with At = (Ax) 2/e to ensure consistency and stability. The
exact solution to the semiclassical Liouville model is calculated using equation (5.7).

The position densities for the semiclassical Liouville solution and the von Neu-
mann solution for several values of - are shown in Fig. 5.2. The errors in the two
solutions are listed in Table 5.2. Based on our study, we find the convergence rate of
the 11-error of the pdf is about 0.7 as E ->0 and the convergence of the 1'-error of the
cdf is about 0.9 as e -+ 0.

TABLE 5.2
Errors in solutions of Example 5.2 for different values of E

E 64-I 128-1 256-1 512-1
/i-error (pdf) 6.03 x 10-1 4.04 x 10-1 2.50 x 10-' 1.40 x 10-1
ll-error (cdf) 9.22 X 10-2 4.83 X 10-2 2.53 x 10-2 1.32 x 10-2

We may also consider the effect of incorporating barrier time delay in the ap-
proximation of the von Neumann equation for nonvanishing E. As evident from the
offset of the centers of the distributions on the left side of Fig. 5.2, one source of
error is the time delay which vanishes in the semiclassical limit. The time delay may
be considered as an O(E) correction and hence we may neglect it in the semiclassical
limit. While the the addition of a delay time is numerically nontrivial, for the analytic
solution (5.7) it is a straight-forward modification.

Typically, time delay is defined in terms of Wigner time delay, the delay to the
group velocity of a wave packet resulting from reflection and transmission. As such
it is meaningful when the wave packet has a well-defined peak. This is not generally
the case, especially when the barrier is sufficiently wide. Considering the scattering
relation (4.5), the reflection and transmission group delay times for unit mass are [26]

ed 6 1ldt E d E 1ldr
,rt = argt- =-Im( and 'r=, argr = -Irpp p t dpp pp d

For the step potential (5.6), we have from equation (4.3) that the reflection time
delay is

---= 2Edm [(pq)-'] _ 2E

pV- 1-p 2

when p G [-1,0]. There is no transmission or reflection delay time for p 1 [-1,0]. To
incorporate the time delay, we make the replacement

f(-x+pt,-p,0) - f (-x +p(t + 7),-p, 0)
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FIG. 5.2. Position densities for the semiclassical Liouville (top) and von Neumann (bottom)
solutions of Example 5.2. The von Neumann plot shows 6 equal to (a) 64-1, (b) 128-1, (c) 256-1
and (d) 512-1.

in the reflected term of the exact solution (5.7).
We compare the von Neumann solution with the Liouville solution with time delay

correction. The 11-errors are listed in Table 5.3. Based on this study, we find that the
addition of delay time provides some improvement to the model. The convergence
rate 'of the 11-error of the pdf is about 1.3 and convergence rate of the /-error of the
cdf is about 0.9 as E -4 0.

TABLE 5.3

Errors in solutions of Example 5.2 with time delay correction.

a 64-1 128-1 256-1 512-1

ll-error (pdf) 3.67 x 10-1 1.78 x 10-1 7.05 x 10-2 2.23 x 10-2

l'-error (cdf) 2.62 x 10-2 1.65 X 10-2 7.80 x 10-3 3.90 x 10-3

5.3. Von Neumann solution with two step potentials. We may consider
more complicated geometries by considering multiple barriers. In this example we
construct an 0(1)-wide rectangular barrier by taking two step barriers sequentially.
Consider

{1 if xE [0,g]

V(x)= 0
0 otherwise.

We take the initial conditions given in equations (5.10) and (5.11) with ux = up = 0.05,
xO = -0.45 and p0 = 1.1. We compute over the domain [-1.25, 1.25] and compare the
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solutions at time t = 1.2. The von Neumann equation is solved using a pseudospectral
method with Strang splitting as in Example 5.2. The semiclassical Liouville solution
is solved using the numerical method proposed in §4 using N grid points in x and
p and 1.5N steps in time. The results are shown in Fig. 5.3 with e = 0.002. Even
with a fairly coarse mesh, the numerical semiclassical solution agrees well with the
von Neumann equation both in the strong limit away from the barrier and in the weak
limit between the two step potentials. See Fig. 5.4.

We calculate convergence rate as Ax, Ap, At -- 0 of numerical scheme for the
semiclassical Liouville equation by computing the 1-error of the numerical solutions
using a mesh with N = 50, 100, 200, and 400 grid points. For an "exact" solution,
we use the numerical solution using N = 3200. The errors are listed in Table 5.4.
Based on this study, we find the convergence rate of the numerical scheme using the
l'-norm is about 1.2.

TABLE 5.4
Errors in solutions of Example 5.3 for various mesh sizes Ax.

grid points 50 100 200 400

ll-error 3.32 x 10-1 1.15 x 10-1 4.72 x 10-2 2.56 x 10-2

5.4. Resonant tunneling von Neumann solution. We present a final exam-
ple to illustrate a specific physical model, the resonant tunneling diode (RTD) [19,
25, 30]. An RTD consists of thin layers (a few nanometers thick) of different semicon-
ductors, such as gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs),
that are sandwiched together to form a double-barrier quantum well structure. For
semiconductors the de Broglie wavelength is on the order of tens of nanometers, so the
length of the entire RTD structure is on the length scale of a de Broglie wavelength.
The region outside the barrier is doped to provide a sufficient number of free electrons.
Unlike the transmission probabilities of the step potentials presented the previous ex-
amples, the transmission probability of an RTD is not a monotonic function of the
incident particle energy. Rather, it is oscillatory and admits narrow peaks of total or
almost total transmission well below the cutoff energy for classical transmission. By
changing the bias voltage of an external electrostatic potential applied to the system,
the resonance may be tuned to admit electrons of varying energies.

We shall assume that the electron trajectory is ballistic. In the quantum region,
this simplification is appropriate since the electron mean free path is substantially
larger than the barrier thickness. However, away from the barrier this simplification
is physically unrealistic since the electron mean free path is small compared to the
classical length scale for a den se medium. In this case, a relaxation term or collision
operator should be added to the Liouville equation to capture the particle dynamics.
Since we require that the Hamiltonian be only locally preserved, the model may be
extended to a dissipative system, for which the Hamiltonian is continuous, without
changing the approach discussed in §3 and §4. Hence, for the purpose of validation,
the assumption is reasonable.

We construct a representative barrier

+½Vox X (-oo, -a - b]

_1½Vox/(a+b)+Vb xC (-a-b, -a]U(a,a+b]V(x) !o/a+b XC
{ |-ox/(a+b) xE[-a, a + b]

½o X G (a + b, oo)
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FIG. 5.3. Position densities for the numerical semiclassical Liouville (top) and von Neumann
(bottom) solutions of Example 5.3. The * in the Liouville plot shows the numerical solution for with
150 grid points over the domain [-1.25,1.25]. The solid line shows the numerical solution for 3200
grid points. The von Neumann solution is for s = 0.002.
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FiG. 5.4. Detail of Fig. 5.3 showing position densities for the numerical semiclassical Liouville
and von Neumann solutions. The * shows the numerical solution for with 150 grid points over the
domain [-1.25,1.25]. The solid line shows the "exact" Liouville solution and the von Neumann

solution using e = 0.002.
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FIc. 5.5. Transmission probability as function of the momentum p for the RTD barrier-shown
in the inset-presented in Example 5.4.

where the external potential bias VO = 0.48, the thickness of each barrier b = 0.96, the
thickness of the well separating the barriers 2a = 1.2E, and the height of each barrier
Vb = 2.25. See Fig. 5.5. We take Gaussian initial distributions (5.10) and (5.11) with
ax •-0.05, ap = 0.15, x0 = -1 and P0 = 1. The solutions are computed over the
domain [-4, 4] and compared at time t = 2.5.

The von Neumann equation is solved indirectly using the WKB initial condi-
tions (5.3) with weight distribution (5.4). We use a Crank-Nicolson finite-difference
method to solve the Schrddinger equations. To ensure that the weight function is
sufficiently resolved, we take N = (5e)-1 Schr6dinger solutions with initial values
equally spaced over 8ap about P0.

The semiclassical Liouville solution is solved using the numerical method proposed
in §4 using an N grid points over [-4,4] in x, 2N grid points over [-3, 3] in p and 3N
steps in time. The exact solution is computed using equation (5.7) with transmission
and reflection probabilities calculated using the transfer matrix method. In computing
the transfer matrix for both the numerical and exact solutions, the quantum barrier
is discretized using 2000 grid point over the length 6e for an arbitrary E. The results
are shown in Fig. 5.6 and Table 5.5. We calculate an l1-convergence rate of 1.7 in
AX, Ap, At.

TABLE 5.5
Errors in solutions of Example 5.4 for various mesh sizes Ax.

grid points 80 160 320 640

1
1
-error 3.01 x 10-1 1.37 x 10-1 4.43 x 10-2 8.90 x 10-3
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